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Abstract

This paper is a more in-depth discussions for selected problems discussed in [1], which
are inspired by college entrance exam practice problems from China. When initially seeing
the problem during an exam, one may have no clue how the problem is created. In this
paper, we begin by presenting the essential algebraic manipulation skills that Chinese
high school students are expected to apply to answer the question. We then continue
the discussion by exploring various scenarios that utilize technological tools. We shall see
many unexpected surprising outcomes. More importantly, we summarize how a problem
can be extended to a more general setting whenever is possible.

1 Introduction

This paper is a more in depth discussion on selected problems from the published article [1].
Finding a curve defined by the locus of a moving point has been popular and such problems are
often asked on Gaokao (a college entrance exam) in China. There have been several exploratory
activities (see [5] [7], and [9]) derived from Chinese college entrance exam practice problems
(see [8]). In this article, we typically start with a practice problem originated from ([8]) to
initiate our discussions. We demonstrate how a problem can be solved without the assistance
of technological tools, which shall demonstrate those crucial algebraic manipulation skills that
are required by high school students from China. From a content knowledge point of view, this
paper is very accessible to those students who have learned parametric equations and have a
basic understanding of linear algebra. Problems presented in this paper can be used as 
examples for professional training purposes.

In this paper, we stress that if problems are presented as explorations instead of in an
examination setting, learners would enjoy learning some new mathematics more than simply
performing a collection of somewhat boring algebraic manipulations. We believe making con-
jectures by seeing possible solutions before asking complete analytic or algebraic solutions is
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much more accessible, convincing and intuitive to students. In addition to solving simple cases
by hand, we typically construct a potential solution geometrically using the trace feature of dy-
namic geometry software (DGS) such as Geometry Expressions [3]. Finally, we use a computer
algebra system (CAS) such as Maple [6] to verify that our analytic solutions are identical to
those obtained by using the DGS.

2 Locus from Shifting and Scaling

In the first set of problems we consider we are given two fixed points and a moving point on a
smooth convex curve, and need to find the locus of a point lying on the line segment connecting
one fixed point and a moving point. We first present the original problem and solve it by hand
and then see how the problem can be extended to other scenarios in 2D. Next, we summarize
how the problem is related to the translation and scaling of figures.

2.1 Generating a circle with two fixed points

The setting for our first locus problem has a fixed point on a circle and another fixed point that
is not on the circle. Example 1 is a slightly modified version of the original practice problem
discussed in the Introduction (see [8]).

Example 1 In Figure 1 we are given a fixed circle in blue, (x − a)2 + (y − b)2 = r2 and the
moving point D = (x0, y0) is on the circle. Furthermore we choose the fixed point C = (c, d)
that is not on the circle and let E be the midpoint of CD. The goal is to find the locus of E.

Figure 1: Circle and two fixed points.

We first see how students solve this problem by hand in an exam. We note that the
midpoint E of CD can be written as E =

(
c+x0
2
, d+y0

2

)
. Let x = c+x0

2
and y = d+y0

2
. Then we

see ((2x− c)− a)2 + ((2y − d)− b)2 = r2, which implies that

(2x− c)2 − 2a (2x− c) + a2 + (2y − d)2 − 2b (2y − d) + b2 = r2

4x2 − 4cx+ c2 − 4ax+ 2ac+ a2 + 4y2 − 4dy + d2 − 4by + 2bd+ b2 = r2

After simplifying, we see(
x−

(
a+ c

2

))2

+

(
y −

(
b+ d

2

))2

=
1

4
r2.
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Indeed the locus of the point E is the circle with center
(
a+c
2
, b+d

2

)
and radius r

2
.

Exploration. Following the discussions from Example 1, if we let the point E satisfy−−→
CE = s

−−→
CD with s ∈ (0, 1) and we would like to find the locus of E, then it is easy to verify

that the locus for E will be as follows:(
x− s2 (a+ c)

)2
+
(
y − s2 (b+ d)

)2
= (sr)2 .

To

2.2 Locus as a result of simple translation and scaling

We may view the discussions in the preceding Example 1 as a simple translation and scaling
from a given curve to the other. For instance, if we consider the given fixed points C =
(c, d), A = (a, b) and a curve C1 . We assume C 6= A. By taking the moving point D to be
on the curve C1, our objective is to find the locus of the midpoint E of CD. If O denotes the

origin (0, 0),then the locus
−−→
OE =

−→
OC +

−−→
CE =

−→
OC + 1

2

−−→
CD. In particular, if C1 represents the

circle centered at A and of radius r, then the locus of the point E will be the circle centered
at C and the radius is being scaled to 1

2
of the original circle. (See Figure 2(a).) It is clear

now that if we were to find the locus of the point E satisfying
−−→
CE = s

−−→
CD, where s ∈ [0, 1],

it is equivalent to asking the locus of
−−→
OE =

−→
OC +

−−→
CE =

−→
OC + s

−−→
CD, where s ∈ [0, 1]. If the

equation of C1 is represented by

[
x1(t)
y1(t)

]
, then we can write the locus of

−−→
OE as

[
x2(t)
y2(t)

]
=

[
c
d

]
+ s

[
x1(t)− c
y1(t)− d

]
= (1− s)

[
c
d

]
+ s

[
x1(t)
y1(t)

]
.

If C1 represents the circle centered at A and of radius r, the locus of
−−→
OE can be viewed as

a result of the combination of translation and scaling. Figure 2(b) shows the translation and
scaling when s = 1

4
.

It is clear that there can be more than one way of expressing the locus of E. For example,

we may write
−−→
OE =

−→
OA +

−→
AE =

−→
OA +

−→
AC +

−−→
CE =

−→
OA +

−→
AC + 1

2

−−→
CD =

−→
OA +

−→
AC+

1
2

(−−→
AD −

−→
AC
)

=
−→
OA+ 1

2

(−→
AC +

−−→
AD
)

. To find the locus of the point F satisfying
−→
CF = s

−−→
CD,

where s ∈ (0, 1), in this case, we note
−→
OF =

−→
OA+

−→
AF, where

−→
AF =

−→
AC + s

−−→
CD (1)

=
−→
AC + s

(−−→
AD −

−→
AC
)

= (1− s)
−→
AC + s

−−→
AD, (2)

If the equation of C1 is represented by

[
x1(t)
y1(t)

]
, then the locus of

−−→
OE can be written as

[
x2(t)
y2(t)

]
=

[
a
b

]
+ (1− s)

[
c− a
d− b

]
+ s

[
x1(t)− a
y1(t)− b

]
,
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where s ∈ [0, 1]. We see that when s = 0 we get the point C and when s = 1 we get the
parametric curve C1. In particular, Figure 2(b) shows the translation and scaling when s = 1

4

and C1 is a circle.

(a) (b)

Figure 2: Locus of the point F (a) when s = 1
2

and (b) when s = 1
4
.

Analytic verification that the locus is a simple translation and scaling is easily completed
with the help of a CAS such as Maple [6]. Figure 3 shows six snapshots of the translation and
scaling for the case when A = (a, b) = (−.725, .15), r = .7685864, and C = (c, d) = (−1.8, 0.89).
In each frame the locus is a circle centered at a point lying along the line segment AC (because

of the factor (1− s)
−→
AC in 1) and each radius increases as s increases (due to the factor of s

−−→
AD

in 1).
Supplemental resource [S1] provides a framework for further hands-on exploration on this

problem and other interesting translation and scaling problems. In particular, we encourage
readers to explore this problem when the circle is replaced with an ellipse as follows:

Exercise 2 Suppose we are given an ellipse and two fixed points A and C respectively where
A is the center of the ellipse and C 6= A. (See Figure 4.) We let D be a moving point on the

ellipse and E be a point such that
−−→
CE = s

−−→
CD, s ∈ [0, 1]. Find the locus

−−→
OE =

−→
OA+

−→
AE.

It is clear that the locus in this case is a result of simple translation and scaling from the

original ellipse. The two scenarios in Figure 4 show the locus
−−→
OE in red when s = 1

2
and 1

4

respectively. Here we use the ellipse of x2

4
+ y1 = 1 and the fixed point C = [0, 1.3].

The following observation is a simple result of 1. More exploration can be found in supple-
mental resource [S1].

Theorem 3 Let A = (a, b), C = (c, d) be two fixed points and P represent a closed parametric
curve that is represented by [x(a, b, r, t), y(a, b, r, t)] = [a + f(r, t) cos t, b + g(r, t) sin t] where

f(r, 0) = 0 and t ∈ [0, 2π]. If D is a moving point on P , then the locus F satisfying
−→
CF = s

−−→
CD,

s ∈ [0, 1], is a simple translation of the parametric curve from point C to point A with a scaling
factor of s. In particular, when f(r, t) and g(r, t) are positive constants then P is an ellipse
and the locus corresponds to a translation and scaling of this ellipse.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Locus of the point E (a) when s = 0, (b) when s = 0.16667, (c) when s = 0.29167,
(d) when s = 0.5, (e) when s = 0.79167, and (f) when s = 0.91667.

(a) (b)

Figure 4: Snapshots from the transition between two ellipses when (a) s = 1
2

and (b) s = 1
4
.
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In higher dimensions there can be more than one way of expressing the locus for the trans-
lation and scaling. We describe our 3D extension as follows:

Theorem 4 Let A = (a, b, c), C = (d, e, f) be two fixed points and P represent a closed

parametric surface that is represented by
−→
OA+

 x1(t1, t2)
y1(t1, t2)
z1(t1, t2)

, where t1 ∈ [0, 2π] and t2 ∈ [0, π].

If D is a moving point on P , then the locus of the point E satisfying
−−→
CE = s

−−→
CD, s ∈ [0, 1],

which can be equivalently described in parametric form as x2(t1, t2)
y2(t1, t2)
z2(t1, t2)

 = (1− s)

 d
e
f

+ s

 a+ x1(t1, t2)
b+ y1(t1, t2)
c+ z1(t1, t2)



, is a simple translation of the parametric surface

 x1(t1, t2)
y1(t1, t2)
z1(t1, t2)

 from point C to point A with

a scaling factor of s. In particular, s = 0 corresponds to the point C and s = 1 represents the

surface of
−→
OA+

 x1(t1, t2)
y1(t1, t2)
z1(t1, t2)

.

The proof of this result follows immediately from the simple observation that

−→
OF =

−→
OC +

−→
CF =

−→
OC + s

−−→
CD

=

 d
e
f

+ s

 a+ x1(t1, t2)− d
b+ y1(t1, t2)− e
c+ z1(t1, t2)− f


= (1− s)

 d
e
f

+ s

 a+ x1(t1, t2)
b+ y1(t1, t2)
c+ z1(t1, t2)

 .
We provide an example on 3D exploration in supplemental resource [S1].

3 Locus From Linear Combinations

Suppose we are given three points A, B, C on three respective curves C1, C2, C3. We would

like to explore the locus of r
−→
AB + s

−→
AC, where r and s ∈ (0, 1). Similarly, if we are given four

points A,B,C and D on four respective surfaces of S1, S2, S3 and S4, we can explore the locus

of r
−→
AB + s

−→
AC + t

−−→
AD,where r, s and t ∈ (0, 1).

3.1 Locus of two moving points

We first discuss a locus generated by linear combinations of two vectors from two respective
closed curves.
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Figure 5: Circle and two fixed points.

We consider two circles C1 and C2, whose centers are at A and C, and the radii are r1 and
r2 respectively. We let E and F be two moving points on C1 and C2 respectively. If G is the
point so that AEGF forms a parallelogram, what is the locus of G?

It is easy to see that the points G satisfy
−→
OG =

−→
OA +

−→
AG =

−→
OA +

(−→
AE +

−→
AF
)

(see

Figure 5). We observe that it is easier to solve this problem using vectors than algebraically.
To simplify our problem a bit, assume A = (0, 0). The first glance of the locus contains

a surprise. The new locus (in red of both parts of Figure 5) is centered at the center C of

the second circle C2 but with a radius larger than r2. The locus
−→
OG =

−→
AE +

−→
AF can be

written as
−→
AE +

(−→
AC +

−→
CF
)

=
(−→
AE +

−→
AC
)

+
−→
CF . Note that

(−→
AE +

−→
AC
)

is a translation

from the circle C1 to another circle centered at C with the same radius r1. But the locus

for
(−→
AE +

−→
AC
)

+
−→
CF becomes the circle centered at C and radius is r1 + r2. This is clear

if we take C1 to be [a + r cos t, b + r sin t] and C2 to be [c + r2 cos t, d + r2 sin t]. If E and F

are two moving points on C1 and C2 respectively, then it is clear that the locus
−→
OG =

−→
OA+

−→
AE +

−→
AF =

[
a
b

]
+

[
(a+ r cos t)− a
(b+ r sin t)− b

]
+

[
(c+ r2 cos t)− a
(d+ r2 sin t)− b

]
=

[
(c+ (r + r2) cos t)
(d+ (r + r2) sin t)

]
. It

is clear that the locus in this case is a circle centered at (c, d) with radius r + r2. We see an
animation from supplemental resource [S1] that the locus in green is indeed a translation from
A to C with radius being the sum of the original two circles, we show a sequence of screen shots
below when A = (−1, 2), C = (2, 3), r2 = 1 and r is going from 0 to 1 as following Figure 6.
Additional exploration is provided in supplemental resource [S2].

Remark: We encourage readers to explore the generalization of the previous example when

the points G satisfy
−→
OG =

−→
OA+ r

−→
AE + s

−→
AF , where r and s ∈ (0, 1).

We now consider the scenario when the circles C1 and C2 are replaced by ellipses:

Exercise 5 Given two fixed ellipses: x2

4
+ y2 = 1 (in blue) and (x+1)2

2
+ (y− 1)2 = 1 (in black),

centered at O and P respectively (see Figure 7 below). Let A and B be two moving points on

these two ellipses respectively. Find the locus for
−→
OA+

−−→
OB.

We leave it to the reader to verify that the locus is an ellipse centered at P . In fact, the
major and minor axes of the locus will be the sums from the the respective lengths of the original

two ellipses. In other words, the equation of the locus should be
(x+ 1)2(
2 +
√

2
)2 +

(y − 1)2

(1 + 1)2
= 1.
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(a) (b) (c)

Figure 6: Snapshots of the translation from A = (−1, 2) to C = (2, 3) when (a) r = 0.45833,
(b) r = 0.625, and (c) r = 1.

1/27/19, 12(13 AMeJMT-1.png

Page 1 of 1about:blank

Figure 7: Locus and translation of an ellipse.
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Remark: The locus in the preceding example can be viewed as a result of a linear combi-
nations from the original two ellipses. Readers are encouraged to explore the problem of finding

the locus of r
−→
OA+ s

−−→
OB, where r and s ∈ (0, 1).

Exercise 6 We are given two fixed cardioid [x1(a, r, t), y1(b, r, t)] = [a + (r − cos t) cos t, b +
(r − cos t) sin t] and [x2(c, r, t), y2(d, r, t)] = [c+ (r − cos t) cos t, d+ (r − cos t) sin t]. Let A and

B be two moving points on these two cardioids respectively. Find the locus for
−→
OA +

−−→
OB. (A

solution to this problem can be found in supplemental resources [S2], [S6] or [S9].)

3.2 Locus of three moving points

We now explore finding a locus when there are three moving points on three separate closed
curves. It is surprisingly simple to find the locus using vectors in this case once we know the
given (parametric) equations of the three closed curves.

First, recall that the implicit form for the ellipse centered at (cx, cy) with major axis rx and
minor axis ry and rotated by the angle α is

((x− cx) cosα + (y − cy) sinα)2

r2x
+

((x− cx) sinα− (y − cy) cosα)2

r2y
= 1.

The corresponding parametric representation of this rotated ellipse is, for each 0 ≤ θ ≤ 2π,

x(θ) = cx + rx cosα cos θ − ry sinα sin θ,

y(θ) = cy + rx sinα cos θ + ry cosα sin θ.

So, for example

Example 7 Let C1 be the ellipse (x+2)2

4
+ (y− 1)2 = 1 rotated by the angle of α = 120 degrees.

The center of this ellipse is (−2, 1), the major radius is 2 and minor radius is 1. We write the
parametric equation C1 as follows:

x1(θ) = −2 + 2 cos

(
2π

3

)
cos θ − sin

(
2π

3

)
sin θ,

y1(θ) = 1 + 2 sin

(
2π

3

)
sin θ + cos

(
2π

3

)
sin θ,

where θ ∈ [0, 2π]. Let the second curve be the cardioid C2: r = 1− cos θ, for θ ∈ [0, 2π]. Thus,
a parametric representation of C2 is

x2 (θ) = (1− cos θ) cos θ,

y2 (θ) = (1− cos θ) sin θ,

where θ ∈ [0, 2π]. And, let the third curve C3 be the unit circle centered at the point (2, 2):

x3(θ) = 2 + cos θ,

y3(θ) = 2 + sin θ,

where θ ∈ [0, 2π]. Let I, F , and G be three moving points on C1, C2 and C3, respectively. The

goal is to find the locus of
−→
IF +

−→
IG.
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If the locus points are called J , then the problem is to describe the vectors
−→
OJ =

−→
OI +

−→
IJ ,

where
−→
IJ =

−→
IF +

−→
IG,

−→
IF =

[
x (θ)
y (θ)

]
=

[
(1− cos θ) cos θ −

[
−2 + 2 cos

(
2π
3

)
cos θ − sin

(
2π
3

)
sin θ

]
(1− cos θ) sin θ −

[
1 + 2 sin

(
2π
3

)
sin θ + cos

(
2π
3

)
sin θ

] ]
,

and
−→
IG =

[
x (θ)
y (θ)

]
=

[
2 + cos θ −

[
−2 + 2 cos

(
2π
3

)
cos θ − sin

(
2π
3

)
sin θ

]
2 + sin θ −

[
1 + 2 sin

(
2π
3

)
sin θ + cos

(
2π
3

)
sin θ

] ]
.

We use Maple [6] to show the locus of the points J in red,, emphasizing the construction of the
points corresponding to t = 0 and to t = π in Figures 8(a) and 8(b), respectively. In particular,

these snapshots clearly demonstrate that
−→
IJ is a result of linear combination of

−→
IF and

−→
IG.

With the use of a CAS, such as Maple [6], it is easy to generate animations when the
weights in the linear combination are allowed to be r or s, where each value is between 0 and
1. For example, Figures 8(c) and 8(d) demonstrate the locus when (r, s) = (0.54167, 1) and
(r, s) = (0.5, 0.20833), respectively. Please see supplemental resource [S3] for more details and
explorations.

Discussion: In the preceding example, the locus is a closed curve C4 that can be deter-
mined once we are given the three closed curves, C1, C2, and C3, and properly setting up the
linear combinations of vectors. One application of this will be using the light source at a point
on either C1, C2, or C3, and we need to find the caustic curve of C4, which we call it C5. We can
continue this process by finding a sequence of closed curves, C4, C5, ... so that Cn+1 depends on
Cn, where n ≥ 3, which we can imagine finding each Cn becomes more computational intensive
when n increases.

Now we consider the locus resulting from four closed surfaces in 3D, three of which are
originated from the preceding 2D example. Suppose surface S1 has a parametric representation
as

x1(t1, t2) = (x1 (t1) + 2) sin t2 − 2

= −2 +

(
2 cos

(
2π

3

)
cos t1 − sin

(
2π

3

)
sin t1

)
sin t2,

y1 (t1, t2) = (y1 (t1)− 1) sin t2 + 1

= 1 +

(
2 sin

(
2π

3

)
sin θ + cos

(
2π

3

)
sin θ

)
sin t2,

z1(t1, t2) = cos (t2) ,

where t1 ∈ [0, 2π] and t2 ∈ [0, π]. The surface S2 is given by rotating the curve [x2 (t1) , y2(t1)]
around the x− axis as follows:

x2 (t1, t2) = x2 (t1)

y2 (t1, t2) = y (t1) cos t2

= (1− cos t1) sin t1 cos t2

z2(t1, t2) = y (t1) sin t2

= (1− cos t1) sin t1 sin t2,
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(a) (b)

(c) (d)

Figure 8: Snapshots showing the construction of the point J at (a) t = 0 and (b) t = pi. Also,
the entire locus of the point J when (c) r = 0.54167 and s = 1 and (d) r = 1

2
and s = 0.20833.
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(a) (b)

(c) (d)

Figure 9: (a) The surface S1. (b) The surface S2. (c) The surfaces S1 (yellow), S2 (blue), S3

(red), and S4 (magenta). (d) Locus of linear combinations of surfaces S1, S2, S3, and S4.

where t1, t2 ∈ [0, 2π]. And, the surfaces S3 and S4 are taken to be spheres with radius 1 and
centers (1, 1, 1) and (1,−1,−1), respectively. As such, S3 and S4 are written parametrically as:

x3(t1, t2) = 1 + sin t2 cos t1, y3(t1, t2) = 1 + sin t2 sin t1, z3(t1, t2) = 1 + cos t2,

x4(t1, t2) = 1 + sin t2 cos t1, y4(t1, t2) = −1 + sin t2 sin t1, z4(t1, t2) = −1 + cos t2,

where t1, t2 ∈ [0, 2π]. If we let A, B, C, D denote the four moving points on S1, S2, S3, and S4,

respectively, then the locus of interest consists of the points E such that
−−→
OE =

−→
OA + (

−→
AB +

−→
AC +

−−→
AD). In this form the locus is easily calculated and plotted (see Figure 9(d)).

We see S1 is a rotated ellipsoid shown in yellow (see Figure 9(a)), S2 is a surface shown in
blue which rotates the cardioid [x2(t1), y2(t1)] around the x-axis (see Figure 9(b)). Figure 9(c)
shows all four surfaces, including the spheres S3 and S4 in red and magenta, respectively. We

depict, in Figure 9(d), the locus of the points E satisfying
−−→
OE =

−→
OA +

(−→
AB +

−→
AC +

−−→
AD
)

in green. Please see supplemental resource [S3] for more details. We encourage the readers to

explore the locus of linear combinations of vector
−−→
OE =

−→
OA+ r

−→
AB + s

−→
AC + t

−−→
AD, where r, s,

and t ∈ (0, 1).
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4 Locus When Fixing Two Points On A Curve

In this section we discuss a locus problem that is inspired by the following college entrance
exam practice problem from China (see [8]).

Example 8 Given a fixed ellipse, say x2

a2
+ y2

b2
= 1 (a > 0 and b > 0), where BE is the major

axis and F is a moving point on the ellipse, construct two lines passing through B and E,
respectively, that intersect at the point I such that ]IBF = ]FEI = 90◦ (see Figure 10). Let
J be the midpoint of BI, find the locus of J . [Note that the red curve represents the scattered
plot of J that can be traced by using ClassPad [2].]

(a) (b)

Figure 10: Ellipse, two fixed points, and the points J when (a) t = t1 and (b) t = t2.

We remark here that if, instead of appearing as a question on an entrance exam, this problem
is presented in the context of a mathematics experiment class with access to technological tools
to enhance visualization, more students would have enjoyed the experience, and they would
actually learn some useful mathematics. For example, before deriving an analytic answer to
this question they can play and learn what a locus might look like. In this way the learning
process becomes much more enjoyable. Here are some explicit steps showing ways to explore
this problem.

1. Start with a DGS (say [2] in this case) for necessary geometric constructions and next
use the scattered plot to conjecture what the locus should look like. Further experiment
with a symbolic DGS such as [3] to generate a possible symbolic solution.

2. Solve the problem analytically by hand for simple scenario or solve it analytically with a
CAS such as [6] as the problem becomes more algebraically intensive.

We first present how one may solve this simple case by hand — without the use of technology.
We let B = (−a, 0), E = (a, 0), and the moving point on the ellipse F = (x0, y0). We denote
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the slopes of FB and FE to be kFB and kFE, respectively; then kFB = y0
x0+a

and kFE = y0
x0−a .

Thus, the equations for lines BI and EI are

y = −x0 + a

y0
(x+ a) (3)

and

y = −x0 − a
y0

(x− a) , (4)

respectively. Substituting (3) into (4) yields:

−x0 + a

y0
(x+ a) = −x0 − a

y0
(x− a)

(x0 + a) (x+ a) = (x0 − a) (x− a)

2ax+ 2ax0 = 0.

Since a > 0, this requires x = −x0 and so the point of intersection is I = (−x0,− 1
y0

(a+ x0) (a− x0).
The midpoint for BI is thus

J = (X, Y ) =

(
−x0 − a

2
,− 1

2y0
(a+ x0) (a− x0)

)
.

This implies that Y = a−x0
y0

X. To obtain the parametric form for the locus J , note that since

(x0, y0) is a point on the ellipse,
x20
a2

+
y20
b2

= 1, and so x0 = a cos t and y0 = b sin t for some
t ∈ [0, 2π). The parametric equations for the locus of J is found to be

X(t) =
−a cos t− a

2
=
−a(cos t+ 1)

2

Y (t) =
(a− a cos t)

b sin t
=
a(1− cos t)

b sin t
X

.

Exploration 1: It is not difficult to generalize this problem to ask for the locus J = (X, Y )

satisfying
−→
BJ = s

−→
BI for some real number s ∈ [0, 1]. In view of

−→
BJ = s

−→
BI, we have

(X + a, Y ) = s

(
−x0 + a,− 1

y0
(a+ x0) (a− x0)

)
J = (X, Y ) = (−s(x0 − a)− a) ,

s

y0
(x0 + a) (x0 − a) .

As before,
x20
a2

+
y20
b2

= 1 and we set x0 = a cos t and y0 = b sin t, where t ∈ [0, 2π), to obtain
the parametric equations for the locus J to be

X = −s(a cos t− a)− a (5)

Y =
s ((a cos t)2 − a2)

b sin t
.

Remarks:
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1. We can use the DGS Geometry Expressions [3] to construct the locus J above through
geometry constructions. We depict some screen shots when s = 0.25 and 0.75 in the
following Figures 11(a) and 11(b).

2. The analytic derivation leading to 5 should be equivalent to the geometric construction
obtained using Geometry Expressions [3]. The to representations are graphed in Figure 11.
The similarities in these figures suggest that these representations are equivalent. The
CAS Maple [6] is useful in verifying that the two representations are, in fact, equivalent.

(a) (b)

Figure 11: Locus of the points J for (a) s = 1
4

and (b) s = 3
4
.

Exploration 2: Consider the scenario in which instead of requiring the ]IBF = ]FEI = θ
for some given angle θ (not necessarily a right angle). Let B = (−a, 0), E = (a, 0), and denote
the moving point on the ellipse by F = (x0, y0). Denoting the slopes of FB and FE as kFB

and kFE, respectively, then kFB = y0
x0+a

= tan θ1 and θ1 = tan−1
(

y0
x0+a

)
. In the meantime,

kFE = y0
x0−a = tan θ2 and θ2 = tan−1

(
y0

x0−a

)
.

The equations for lines BI and EI are found, with the help of Maple [6], to be:

y = tan

(
tan−1

(
y0

x0 + a

)
+ θ

)
(x+ a) (6)

and

y = tan

(
tan−1

(
y0

x0 − a

)
− θ
)

(x− a) (7)

respectively. Using (6) and (7) to solve for x yields

x =
a tan

(
arctan

(
y0

−x0+a

)
+ θ
)
− tan

(
arctan

(
y0

x0+a

)
+ θ
)

tan
(

arctan
(

y0
x0+a

)
+ θ
)

+ tan
(

arctan
(

y0
−x0+a

)
+ θ
) ,
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and use (6) or (7) to find an expression for y, which is too long to display and can be found
in supplemental resource [S4]. To obtain parametric equations for the locus of J = (X1, Y1)

such that
−→
BJ = s

−→
BI, s ∈ [0, 1], where I = (x, y) is the intersection of BI and EI, substitute

x0 = a cos t and y0 = b sin t for x and y, respectively. Then we see that the locus of J can be
expressed as

[
X1 (a, b, s, t, θ)
Y1 (a, b, s, t, θ)

]
=

[
s (x (a, b, s, t, θ) + a)− a

sy (a, b, s, t, θ)

]
= s

[
x (a, b, s, t, θ)
y (a, b, s, t, θ)

]
− (1− s)

[
a
0

]
.

The actual expressions for X1(a, b, s, t, θ) and Y1(a, b, s, t, θ) produced by Maple [6] are shown
in the following screenshots:

For comparison, Geometry Expressions [3] reports the corresponding parametric equations
for the locus of the point J as, after simplification,

X = s
2a2b cos(t)

(a2 − b2) sin(2θ) sin(t) + 2ab cos(2θ)
− (1− s)a

Y = s
2a
(
a2 sin2(θ) + b2 cos2(θ)

)
sin(t) + ab sin(2θ)

(a2 − b2) sin(2θ) sin(t) + 2ab cos(2θ)

Remark: The DGS Geometry Expressions [3] has the capability of linking its outputs to
a CAS such as [6] for further computation. Although it is not trivial to prove algebraically
that the locus equation [X1, Y1] obtained from Maple is identical to that of [X, Y ] obtained
from the Geometry Expressions, the Maple worksheet used by the authors to check these
results is provided as supplemental resources [S4]; see all [S7] or [S10] for additional hands-on
explorations. These also provide graphical verifications under different scenarios: varying one
parameter, varying one parameter and fixing the other. The two parts of Figure 12 show both
[X1, Y1] and [X, Y ] when a = 2, b = 2, s = 1

4
, and (a) θ = π

4
and (b) θ = 2π

3
.
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(a) (b)

Figure 12: Parametric curves [X(2, 2, 1
4
, t, θ), Y (2, 2, 1

4
, t, θ)] = [X1(2, 2,

1
4
, t, θ), Y1(2, 2,

1
4
, t, θ)]

for (a) θ = π
4

and (b) θ = 2π
3

4.1 Another Generalization: Replacing the Ellipse by a Cardioid

Assuming technological tools are available to learners, it is natural to ask what if the ellipse,
discussed earlier, is replaced by another curve, say a cardioid. In particular, we consider the
following

Example 9 We are given the cardioid r = 1 − cos t, t ∈ [0, 2π] in Figure 13. Suppose the
moving point C is on the cardioid and two lines passing through B = (0, 0) and A = (a, 0)
respectively, and intersect at G so that the angles ]CAG = ]CBG = 90◦. Find the locus of
the midpoint, J , of AG. [Note, in Figure 13, the red curve is a scattered plot of the locus of J ,
when A = (−2, 0), and has been obtained using [2]]

Figure 13: Locus of midpoints J of segment AG for a cardioid.
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When A = (a, 0) (a 6= 0)and B = (0, 0) denote the moving point C = (x0, y0), the slopes
for CB and CA are kCB = y0

x0
and kCA = y0

x0−a , respectively. The corresponding equations for
CB and CA are

y = −x0
y0
x, (8)

and

y = −(x0 − a)

y0
(x− a) , (9)

respectively. The intersection of these two lines occurs when x0
y0
x = (x0−a)

y0
(x− a). Since a 6= 0

we see x = a − x0 so that y =
(
x0
y0

)
(x0 − a). In other words, the intersection is G = (a − x0,(

x0
y0

)
(x0 − a)) and the midpoint for AG is

J = (X, Y ) =

(
2a− x0

2
,
x0 (x0 − a)

2y0

)
.

But, since C is a point on the cardioid r = f(t) = 1 − cos t we can write x0 = (1 − cos t) cos t and 
y0 = (1 − cos t) sin t. Thus we obtain the following parametric equations for the locus of J :

X(t) =
2a− (1− cos t) cos t

2

Y (t) =
(1− cos t) cos t ((1− cos t) cos t− a)

2 (1− cos t) sin t
.

Exploration 1. It is not difficult to generalize this result to the problem of identifying

the locus of J = (X, Y ) such that
−→
AJ = s

−→
AG for some real number s.

The equation
−→
AJ = s

−→
AG clearly defines the point J = (X, Y ). The same process as used

above shows that X = a − sx0 and Y = s
(
x0
y0

)
(x0 − a). Since it is still the case that (x0, y0)

is a point on the cardioid r = f(t) = 1− cos t, the locus J in this case is

X(a, s, t) = a− s (1− cos t) cos t (10)

Y (a, s, t) =
s (1− cos t) cos t

(1− cos t) sin t
((1− cos t) cos t− a)

Figure 14 shows screenshots produced with Geometry Expressions [3] of the construction when
a = −2 and s = 0.3, 0.7, and 1.5, respectively. Maple [6] has been used to verify that the
expressions, and figures, produced with Geometry Expressions [3] are consistent with those
obtained directly by Maple.

Further Remarks:

1. Notice that the cardioid r = 1 − cos t has a point of non-differentiabilty at B = (0, 0).
What point on the locus of J corresponds to this point on the cardioid?

2. In view of the derivation in equations 10, we encourage readers to explore how the graphs
varies according to the parameters a, s, and t, respectively.
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(a) (b) (c)

Figure 14: Locus of the point J (a) when s = 1
2

and (b) when s = 1
4
.

Exploration 2. To discuss the scenario when ]CAG = ]CBG = π − θ. If we denote
the moving point on the cardioid as C = (x0, y0) and the intersection of lines BG and AG as
G = (x, y). The slopes for CB and CA are kCB = y0

x0
and kCA = y0

x0−a , respectively, so that

θ1 = arctan
(
y0
x0

)
and θ2 = arctan

(
y0

x0−a

)
. The equations for BG and AG can be written as

y = tan (θ1 − θ)x (11)

and
y = tan (θ2 + θ) (x− a) . (12)

When Maple [6] solves equations (11) and (12) it produces

x =
a tan

(
− arctan

(
y0

−x0+a

)
+ θ
)

tan
(
− arctan

(
y0

−x0+a

)
+ θ
)

+ tan
(
− arctan

(
y0
x0

)
+ θ
) .

Then, using equation (6) or (7) to find y, the result is too long to display but can be found
in the supplemental resource [S5]. More explorations can be found in supplemental resources
[S8] and [S11]. Continuing, we substitute x0 = (1− cos t) cos t and y0 = (1− cos t) sin t into
the expressions for x and y to find the intersection between AG and BG, which we denote it

as G = (x, y). Since the locus J = (X, Y ) is such that
−→
AJ = s

−→
AG for some real number s, the

locus of the points J = (X1, Y1) is found to satisfy[
X1 (a, s, t, θ)
Y1 (a, s, t, θ)

]
=

[
s (x (a, s, t, θ)− a)

sy (a, s, t, θ)

]
= s

[
x (a, s, t, θ)− a
y (a, s, t, θ)

]
+

[
a
0

]
.

The final expressions obtained by Maple [6] for X1 (a, s, t, θ) and Y1 (a, s, t, θ) are shown in the
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following screenshots:

The corresponding parametric equations for the locus of J obtained from Geometry Expres-
sions [3] is, when converted into the Maple syntax:

Supplemental resources [S5], [S8] and [S11] show that the family of locus plots for the
parametric equations [X1(−2, s, t, θ), Y1(−2, s, t, θ] obtained from Maple [6] are identical to
[X(−2, s, t, θ), Y (−2, s, t, θ)] obtained from Geometry Expressions [3]. For the specific situ-
ation when a = −2, s = 0.7, and θ = 2π

3
, Figure 15 shows locus produced by Maple with blue

diamonds and the locus produced by Geometry Expressions with red crosses (and the original
cardioid in cyan). The actual proof that the two representations are equivalent is not difficult,
but it is tedious and the final expressions are not immediately illuminating, so these details are
omitted here.

5 Conclusion

It is clear that technological tools provide us with many crucial intuitions before we attempt
more rigorous analytical solutions. Here we have gained geometric intuitions while using a DGS
such as [2] or [3]. We also showed the utility of a CAS, such as Maple [6], for verifying that
our analytical solutions are consistent with our initial intuitions. The complexity level of the
problems we posed vary from the simple to the difficult. Many of our solutions are accessible
to students from high school. Others require more advanced mathematics often taught in
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Figure 15: Comparison of the parametric curves
[
X1

(
−2, 0.7, t, 2π

3

)
, Y1
(
−2, 0.7, t, 2π

3

)]
from

Maple (in blue diamonds) and
[
X
(
−2, 0.7, t, 2π

3

)
, Y
(
−2, 0.7, t, 2π

3

)]
, from Geometry Expres-

sions (in red crosses).

universities. The more advanced problems are excellent examples for future teachers to explore
and to understand before they try to explain the simpler problems to their students.

Evolving technological tools definitely have made mathematics fun and accessible. They also
allow the exploration of more challenging and theoretical mathematics. We hope that when
mathematics is made more accessible to students, more students will be inspired to investigate
problems ranging from the simple to the more challenging, and even open questions. We do
not expect that exam-oriented curricula will change in the short term. However, encouraging
a greater interest in mathematics for students, and in particular providing them with the
technological tools to solve challenging and intricate problems beyond the reach of pencil-and-
paper, is an important step for cultivating creativity and innovation.
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